
Dimensionality reduction and trajectory grouping
Complex Systems research project

Nardi Lam, 6313159

Utrecht University

August 23, 2020

In this study, dimensionality reduction (DR) is investigated in the context

of the trajectory grouping problem (TGP), which is the problem of identifying

groups among a set of moving entities from their trajectory data. A method

of extracting group structure from the output of a DR algorithm is devised,

and various DR methods (PCA, ICA, and a custom clustering procedure) are

evaluated on a synthetic data set generated using the Kuramoto model. As a

comparison baseline themethod fromBuchin et al. (2013) is used, which is based

on spatially connected sets of entities. From the results, it seems that the notions

of ‘groups’ and dimensionality agree, as PCA can be used to predict the number

of groups accurately. In predicting the specific group structure, the grouping

via DR does not perform well enough to act as a substitute for the method by

Buchin et al. However, the application of DRmethods to a problem such as this

seems to be sensible, and the procedure outlined here may be useful for similar

applications of dimensionality reduction.

Contents

1 Introduction 3

2 The trajectory grouping problem. 4

2.1 The proximity-based definition of a group. 5

2.2 The relationship between grouping and dimensionality reduction. 6

2.3 Generalized grouping via dimensionality reduction. 7

3 Dimensionality reduction methods 9

3.1 PCA . 11

3.2 ICA . 12

3.3 SOMs . 13

3.4 A SOM variant for trajectory grouping. 15

2

4 Experimental setup 20

4.1 Trajectory data from the Kuramoto model. 20

4.2 Dimensionality reduction on Kuramoto data. 22

4.3 Extracting the group structure. 23

4.4 Comparative analysis. 24

4.5 Implementation. 25

5 Results 27

5.1 Estimating the number of groups. 27

5.2 Estimating the group structure. 29

6 Discussion & further work 30

6.1 Counting groups. 30

6.2 Determining group structure. 32

6.3 Related problems and further research. 33

List of concepts 38

Appendices 38

A Additional figures of results 38

B Angular and complex PCA 42

3

1 Introduction

The large size of contemporary datasets makes dimensionality reduction

(DR) a relevant problem in many different fields. Though state-of-the-art

algorithms may be able to deduce complicated statistical relationships from

large amounts of data, it is often useful to be able to generate a reduced

representation of the data first. The reasons for this may be as follows:

1. When unimportant information is filtered out beforehand, other algo-

rithms may decrease in running time, or algorithms which only function

on low-dimensional data may be used.

2. Some operations might be hard to perform on large datasets because of

memory restrictions.

3. For transparency: an algorithm converting a large input to a small (e.g.

yes/no) output might be very opaque if it is not clear what the relevant

information is. Reducing the data set beforehand allows for a clearer

interpretation of the inferences on which eventual decisions are based.

However, DR is not a well-defined problem in general. Each DR method will

have some type of compressive capability (i.e. the information contained in the

data set is represented using less bits than before), but what is a good way to

reduce a data set depends to a large degree on the application. The application

often determines two things:

1. Which information is considered relevant (the content).

2. What a suitable representation of the information (the form) is.

For this reason, it is most interesting to study DR methods in the context of

a specific application. This not only provides new ways to tackle a specific

problem, but also produces further evidence as to which methods are useful

in what kind of situations, and why. If a certain DR method is well-applicable

to a certain problem, it provides practical intuition for the use-cases in which

that method is applicable, and how to interpret the results.

The problem studied in this work is the trajectory grouping problem

(TGP): given a number of time series containing location data of entities

(i.e. trajectories), we would like to identify ‘groups’, or sets of entities which

move ‘together’ in some sense. From a DR perspective, these groups provide

4

an efficient representation of the data: by replacing the trajectory for a

group of entities with a single representative trajectory, we can reduce the

dimensionality of the data set while retainingmuch of the relevant information.

In this paper, the application of a number of dimensionality reduction methods

to synthetic data sets in order to find groups of entities will be studied. This

not only provides an alternative view of the trajectory grouping problem, but

also answers questions about the concrete geometrical interpretation of these

dimensionality reduction methods. First, the TGP will be discussed in detail.

Then, the DR methods under consideration and their applicability to the TGP

will be discussed on a theoretical basis, and then experimental results of their

performance will be presented to support these theoretical hypotheses.

2 The trajectory grouping problem.

In the last decade, the rise of smartphones and other mobile computing devices

had led to a large amount of sensor data that is available in many different

scenarios. In some cases, this data consists of time-series data which records the

location1 of certain objects. We will refer to these moving objects as entities, 1 The location is measured in terms
of spatial coordinates, so these will
usually be sequances of vectors in
ℝ2 or ℝ3, but the idea works in any
metric space.

and the sequences measuring their location as trajectories. Examples of this

could be people walking through a city, cars driving in traffic, animals moving

around a nature reserve or even gene expression data (Phang et al., 2002).

The trajectory grouping problem (TGP) is the problem of finding ‘groups’ of

entities in this type of data (Buchin et al., 2013). By a common sense definition,

these are entities whose movement is somehow linked, though the formal

definition may vary. The most obvious reason for wanting to find these groups

is a practical one: if there is a lot of data, the individual trajectories are by

themselves often not so important in the grand scheme of things, or there are

simply too much of them to handle in some sensible way. Reducing the set of

individuals to a (smaller) set of groups enables further analysis.

There are also many domain-specific uses for trajectory grouping. If the group

structure is known, it may be used to efficiently utilize common resources,

by for example discovering opportunities for carpooling (Lee and Liang, 2011).

Information about the group structure may also be necessary for constructing

useful models of behavior. Both humans (Pellegrini et al., 2010) and non-

human animals (Couzin, 2009) show interesting behavioral patterns in how

they form groups and how these relate to each other. Finally, a purpose for

which grouping may be applied is to protect the privacy of individuals by only

5

retaining ‘agglomerate’ trajectories rather than people’s personal location data

(Nergiz et al., 2008).

2.1 The proximity-based definition of a group.

In order to find groups of entities, a formal definition of what constitutes a

group needs to be established. For inspiration, the definition from Buchin et al.

(2013) can be used. They formulate a group in terms of three parameters: a

spatial parameter �, a temporal parameter �, and a size parameter m. Suppose

we have a set of entities E which are located in a metric spaceM with associated

metric d. A group G is then defined as a maximal2 set of at leastm entities that 2 Maximal means that there is no
other group H such that either
G ⊂ H or such that the time interval
over which G exists is contained in
the interval over which H exists.

are all �-connected3 to one another for at least a time period of �. This definition

3 To be �-connected means that
between each pair of entities
e, f ∈ G there exists a path
p = (ℎ1, ..., ℎn) ∈ Gn for n ≥ 2
with ℎ1 = e, ℎn = f, such that the
distance between each adjacent
pair of entities d(ℎi , ℎi+1) with
1 ≤ i < n is at most �.

will henceforth be called the proximity-based definition of a group.

To apply this definition of a group to a sample of trajectory data, reasonable

values for the parameters need to be chosen. We will be considering data which

is assumed to lie on the attractor of some system, and as such the group structure

can be assumed constant. Because we presuppose a constant group structure,

this means a group only exists if it exists during the entire length of the sample.

Therefore we can set � = T, where T is the length of the sample.

For simplicity we will divide all entities into groups, so that m = 1. This

means the maximum number of groups is equal to the total number of entities.

Then, finding the groups in a data sample amounts to choosing a distance �, and

finding �-connected sets of entities that persist over during the entire sample.

What is a suitable value for � depends on the specific structure of the data, and

will be treated later on.

The procedure to find the group structure in a data sample by proximity will

then be as follows:

1. LetM be the metric space in which entities live, Θ(t) = (�1(t), ..., �N(t)) ∈

MN the locations of the N observed entities at time t, and d ∶ M2 → ℝ+ a

suitable metric4 onM. 4 The usual requirements for a met-
ric are assumed to hold: d(x, y) = 0
implies x = y, d(x, y) ≥ 0, d is sym-
metric, and the triangle inequality.

2. Choose a distance parameter � ∈ ℝ+ which controls how close entities

must be for them to be grouped together.

3. Calculate the maximum pairwise distances between all pairs of entities

(�i , �j) and store them in a matrix R such that Rij = max
t
d
(
�i(t), �j(t)

)
.

4. Create a graph G with N vertices, where each vertex corresponds to an

entity, and an edge between two vertices exists iff Rij < �.

6

5. The groups are then given by the set of maximal connected components of

G. As such, the graph G can be taken as a description of the group structure

of the data sample.

We will take the group structure graph G to be the object of interest in

determining the groups.

When calculating the group structure graph G using the proximity-based

method, the existence of a group directly depends on themaximum inter-entity

distance, which is used as a measure of ‘relatedness’ of two entities. However,

we may try to find this group structure using dimensionality reduction instead,

in which case themeasure of relatedness changes, and as such the interpretation

of what it means to be a group changes as well. In the next section, various DR

methods will be introduced and it will be discussed how the kind of groups

these methods would construct may differ from the proximity-based groups.

2.2 The relationship between grouping and dimensionality reduc-

tion.

The central thesis motivating this attempt to perform trajectory grouping via

dimensionality reduction is:

A dimensionality-reducing transformation f ∶ MN →Mk with N, k ∈ ℕ and k < N, can sometimes be viewed as

combining the initial N variables together into a smaller number of group variables, and therefore performs a

grouping operation.

Two questions immediately arise here:

1. When exactly is it reasonable to view a dimensionality-reducing transfor-

mation as a grouping operation?

2. How similar is the grouping structure it produces to that of the proximity-

based grouping method?

This study aims to tackle these questions, where the first is mostly a theoretical

question to do with the interpretation of DR techniques, and the second

question is an empirical one which can be studied experimentally.

With regard to the first question, it is important how a given transformation

may be interpreted. Generally, dimensionality reduction is achieved by

eliminating redundancies: when two dimensions (partially) contain the same

information, they may be (partially) combined into one. As such, which

7

dimensions are mapped onto which is determined by evaluating the similarity

between pairs of variables. This means that for different measures of similarity,

the interpretation of what constitutes a group (i.e. what property ‘groups’ two

dimensions together) will differ, and some measures may lead to more intuitive

interpretations than others.

In the proximity-based case, the measure of similarity between entities which is

applied is amaximum connected inter-entity distance, leading to a binary decision

on whether two entities should be grouped or not. As such, the resulting

groups are sets of entities which are not too far away from each other, where

‘not too far’ is specified by the parameter �. In the case of dimensionality

reduction methods, this measure of similarity between entities or trajectories

will usually be something more abstract, such as a statistical measure. In that

case, it is not as evident how to determine whether two entities belong in a

group together. Therefore, to compare the results of grouping via DR methods

to the proximity-based method, a generalized version of the group extraction

procedure is necessary. Here the comparison between entities is made in a

generic way, independent of how the actual transformation f is defined. This

generalized variant will be described in the following section.

2.3 Generalized grouping via dimensionality reduction.

Suppose we have a trajectory data set containing location data for N ∈ ℕ

entities, withT ∈ ℕ samples each, stored in a datamatrixX ∈ MN ×T . If we apply Here MN ×T is the set of N-by-T
sized matrices, with elements from

M.
our dimensionality reducing transformation f ∶ MN → Mk to each column of

X, we will obtain a reduced data matrix Y ∈ Mk ×T , where k < N. Now, if we

interpret these k new ‘trajectories’ as groups, we may take one of the original

trajectories xj and one of the group trajectories yi , and compare these in some

way to determine whether entity j should be a member of group i.

Let r ∶
(
MT)2 → [0, 1] be a function which measures the ‘similarity’ of two

trajectories5, where MT is the space containing trajectories for a single entity 5 The only condition placed on r is
that r(x, x) = 1 for any x ∈ MT .(i.e. the rows of X). Then, we may construct a matrix R ∈ [0, 1]k ×N such that

Rij = r(yi , xj). We will call this the relationship matrix R, as it relates the

original entities to the reduced set of variables.

We have seen before that from a group structure graph G, wemay determine the

groups by looking at the set of connected components. If the set of entities is

denoted E, there is by definition6 a one-to-one correspondence between E and 6 See the definition of G on page 5.
the vertices of the graph G. As such, the connected components of the graph

8

G will give a partition C ⊂ P(E) of the set of entities. Let this C be called a

grouping partition. For such a partition, each entity is assigned to exactly one

group. This assignment can be equivalently expressed by a binary relationship

matrix R ∈ {0, 1}k ×N where each row (corresponding to one entity) contains

only one non-zero value (the group it is assigned to). As such, we can easily

construct a group structure graph from a binary relationship matrix. We will

call the group structure specified by a binary relationship matrix a strict group

assignment.

However, if the relationship matrix is generated using an arbitrary similarity

measure r, R will typically be a real-valued matrix with entries in [0, 1].

Therefore we must assign an interpretation to the full range of values in order

to obtain a group assignment from an arbitrary R.

One way to do so is to consider soft group assignments. Instead of each

entity belonging to exactly one group, we will specify a probability distribution

over the k different groups for each entity. To construct such a probability

distribution we will use the matrix R. Let the probability Pij that entity j ∈

1, ..., N is in group i ∈ 1, ..., k be related to R as follows:

Pij =
exp

(
�Rij

)

k∑

i=1
exp

(
�Rkj

)
,

with � ∈ ℝ, such that P ∈ [0, 1]k ×N is a matrix of probabilities7. The function 7 Note that a binary R containing
one nonzero element in each col-
umn already specifies a distribution
over groups for each entity, which
means in this case we can simply
take P = R.

applied here is called the softmax function (Bridle, 1990), which provides us

with a parameter � that controls the ‘certainty’ with which we make a group

assignment. As � → ∞, the application of this function amounts to setting the

largest value to 1 and the rest to 0, so in the limit it becomes a strict assignment.

In this case each entity is definitely assigned to a group, even if the evidence

supporting that assignment is weak. For smaller values of �, the probability

distribution will be less concentrated on the largest value and so we allow

uncertainty in which group an entity belongs to. This makes it possible that

entities are not assigned to any group, but if an assignment is made it will be

more reliable. In other words, � allows us to make a choice in how ‘quick we

are to judge’ an entity as being part of a group.

What remains is to use the probability matrix P to construct a group structure

graph G. The general condition for two entities being in the same group will be

9

defined as follows:

Entity i and j are in the same group ⟺
N∑

k=1
Pki ⋅ Pkj >

1
2 .

This definition says that two entities are in the same group if the probability of

them being in the same group is larger than the probability of them not being

in the same group8, according to P. Because the groups are taken to be the 8 Because these are binary out-
comes (either they are in the same
group, or not), this is the same as
the probability of the first outcome
being greater than 1∕2.

connected components of G, we can use this as a condition for edges to exist:

There is an edge between vertices i, j in G ⟺
N∑

k=1
Pki ⋅ Pkj >

1
2 .

Note that the sum on the right is exactly the dot product of columns i and j of

P. Then, if P⊤ is the transpose of P, we may also define the graph as follows:

There is an edge between vertices i, j in G ⟺
(
P⊤P

)
ij >

1
2 .

Using this general method, we can construct an analog of the proximity-based

group structure graph using the original data matrix X and a reduced data

matrix Y, together with a similarity measure r and a fixed ‘certainty parameter’

�.

3 Dimensionality reduction methods

This section discusses the various dimensionality reduction (DR) methods

applied in this study. First, a few important terms will be clearly explained. A A nice complementary article on

dimensionality reduction is the re-

view by Van Der Maaten et al.

(2009), where various other dimen-

sionality reduction methods which

are not discussed here are com-

pared (and vice versamost methods

used here are not treated there).

DRmethod is generally speaking a procedure that given a set of points in some

high-dimensional space, will generate a set of points in a lower-dimensional

space that is in some way representative of the original data set. The metric

by which ‘representativeness’ is measured differs per algorithm. This low-

dimensional data set is called an embedding of the original data set. For

conciseness, I will sometimes refer to the high-dimensional space in which the

original data is contained as the input space or large space L, and to the space

in which the embedding is contained as the output space or small space K.

Then, given a set of points X ⊆ L, the objective of a DR method is to find a set

Y ⊆ K, |Y| = |X| which is representative of X.

In the case of the trajectory grouping problem, the original data set consists of

N ∈ ℕ trajectories followed by entities in some metric entity space M, such

as the plane ℝ2 or the circle S1. Then, the large space L is formed as the metric

10

product space of N of these entity spaces:

L =
N∏

i=1
M = MN .

If d ∶ M2 → ℝ is a metric onM, the associated metric onMN can be defined as

the lp-norm of the component-wise distances in the entity spaceM:

d (v, w) = p

√
√√√√

N∑

i=1
d (vi , wi)

p,

with v, w ∈ MN , vi , wi ∈ M and usually we will choose p = 2. Moreover,

we will take the reduced space to be K = Mk , where k ≤ N is the reduced

dimensionality.

An important difference between different methods of generating an em-

bedding is their type of parameterization. Most methods construct

dimensionality-reducing (DR) transformation f ∶ L → K which maps points

from the large space into the small space, and use this to generate the embedding

Y from the input set X. These are called parametric methods. Some methods

do not construct any explicit embedding function9: these are non-parametric. 9 If we take L = X and K = Y, there
always exists a trivial embedding
function which simply maps each
point in X onto one in Y. However,
this function does not give us any
additional information about how
X is transformed into Y, so it is not
interesting.

As the name suggests, parametric methods work by assuming a certain func-

tional form for the embedding function, and then adjusting its parameters so

that it generates a suitable embedding. Because parametric methods provide a

function which has a larger domain than the points contained in the data set

(i.e., X ⊂ L), they provide generalization: new points that were not available

when the initial embedding was constructed can be embedded without chang-

ing existing points or having to rebuild the embedding function.

Whether an embedding is representative of the original is often determined

by the value of some error metric between the two data sets. A common

metric for parametric methods is the reconstruction error. This measures

themean distance between each point and its reconstructed counterpart, which

is the point obtained after it has been embedded into the small space, and

then transformed back into the large space by the approximate inverse of the

embedding function. Suppose we have a input set X and a pair of functions

f ∶ L → K and f̃ ∶ K → L, where f̃ is an (approximate) inverse10 of f. The 10 For example, for a linear trans-
formation f̃ can be the Moore-
Penrose psuedo-inverse. In most
other cases a reasonable definition
for f̃ can also be given, for ex-
ample by (linearly) approximating
f around the inverses of points in
Y = f(X) and using the psuedo-
inverse.

reconstruction error can then be written as

RE(X, f) = ‖‖‖‖f̃(f (X)) − X‖‖‖‖
2
,

where ‖… ‖ denotes a matrix norm. In addition, other constraints are often also

11

imposed either on the embedding function, or the embedding itself. These serve

to regularize the embedding process and prevent unwanted characteristics of

the output.

For non-parametric methods, the reconstruction error is not defined, as there

is no embedding function. A quantity which measures the difference between

distributions may be used instead, such as the Kullback-Leibler divergence or

the Wasserstein metric (also known as earth movers’ distance) (Amari et al.,

2018).

Most of the different DR methods can be characterized by these properties:

their parameterization, the error metric between original and embedding that

is minimized, and the precise procedure by which minimization occurs.

3.1 PCA

One of the most frequently used DR methods is principal component

analysis (PCA). This method reduces the dimension by calculating the To implement PCA is quite simple,

one only needs to calculate the

covariance matrix for the set of

trajectory time series and find the

eigenvectors of this matrix, which

is standard functionality in most

math libraries. An introduction to

PCA can be found in Shlens (2014).

projection of each data point onto a basis of orthogonal axes in the original

space. These principal axes are ordered, and chosen such that the projection

onto each consecutive axis captures as much of the (remaining) variance in the

original data set as possible in one (additional) dimension. The projection of the

original data onto these axes are called the principal components (PCs).

PCA uses the measure of captured variance (CV) to determine the ideal set

of components. This measure is directly related to the reconstruction error, in

the sense that a k-dimensional (linear) projection which captures the maximal

amount of variance is exactly the k-dimensional projection which minimizes

the reconstruction error. Another important property is that the variance

captured by a set of principal components is equal to the sum of the variance

per component, because the components are uncorrelated.

Due to this last property, a k-dimensional basis may be constructed by

ordering the components by their captured variance, and selecting the first

k components. Then, any N-dimensional point may be embedded into a

k-dimensional space by approximating it with the projection onto the basis

spanned by these k components.

In the terminology which has been introduced earlier, PCA is a parametric

method which constructs a linear embedding function which produces an

embedding with minimal reconstruction error. PCA is very simple to apply

and to interpret, but that also makes it less powerful than other techniques.

12

If the data set contains relationships between variables which cannot be well-

approximated by a linear relationship, DR by PCA will not provide a very good

reduced representation. However, it is the most widely used technique, and is

very easily interpretable as each principal component is a linear combination of

the original variables, and there is a clear motivation as to why, for example, the

first principal component is more important than the rest. As such, it provides

a good first attempt to test the application of a dimension reduction method to

the TGP.

In terms of the grouping problem, PCA provides a new idea of what constitutes

a group. Each principal component corresponds to a mix of the original

variables which is highly correlated. As such, PCAmay inform us as to whether

the proximity-based definition (the idea of groups as sets of entities with limited

distance between them) aligns with a notion of groups as sets of entities whose

position is sufficiently correlated. If PCA is effective in determining group

structure, that provides evidence that these two notions may amount to the

same thing.

3.2 ICA

Independent component analysis (ICA) takes the idea of PCA one step A good overview of ICA, its prop-

erties, and various algorithms is

Hyvärinen and Oja (2000). Com-

mon implementations are FastICA

and InfoMax (Langlois et al., 2010),

but in this project the implementa-

tion by Zarzoso and Comon (2010)

was used because it showed the

most stable results.

further. Instead of determining a basis of uncorrelated components, it aims

to find a basis of components which are maximally statistically independent

(Hyvärinen and Oja, 2000). To be precise, it aims to find a transformation

from N variables onto N components c1, c2, … , cN , so that the joint probability

distribution P(c1, … , cN) is approximately factorizable as the product of one-

component distributions:

P (c1, … , cN) ≈
N∏

i=1
P (ci).

Usually, ICA is framed in the context of a demixing problem: supposewe have

N ‘sources’, where each one emits an independent signal. Then, assume that

what we observe are not the N source signals, but mixtures: N signals where

each consists of some combination of the source signals. ICA then aims to find

an ‘unmixing’ transformation which reconstructs the source signals from the

mixtures.

The kind of ICA applied here is linear ICA, where the sources are assumed

to be linearly mixed, and so the unmixing transformation is also linear. Note

that, because the ICA components are maximally independent, they should also

13

be uncorrelated. This makes ICA similar to PCA, but with the requirement of

sequentially ‘optimal’ components in terms of CV replaced by the condition of

stronger independence between components. However, the CV is still a useful

measure to determine the ‘importance’ of the independent components. ICA

in its standard form is meant to solve a system where the amount of variables

is equal to the amount of unknowns, while the TGP is usually applied to an

overdetermined system (more entities than groups). Therefore the CV can be

used to perform dimensionality reduction using ICA by throwing away the

components which contribute the least to the total variance.

One interesting aspect about ICA is that it gives the interpretation of groups as

‘sources’. This means the group is considered to be a generator of the entities,

and therefore conceptually more fundamental than the entities themselves.

However, in practice this has no effect on the mathematical formulation of the

algorithms.

3.3 SOMs

Self-organizing maps (SOMs) provide a way to construct embedding The original proposal of the SOM

algorithm is by Kohonen (1990) and

further details on its properties

and implementation details can be

found in Cottrell et al. (2016). The

implementation used in this project

was based on the optimization for-

mulation by Heskes (1999).

functions which project the original data onto a finite set of anchor points11.

11 Because the SOM is inspired by
theway neuronal pathways adapt in
the brain, what is referred to here
as anchor points are usually called
neurons.

These are points taken from the small space K, arranged in a lattice structure

(usually square or hexagonal-shaped). As such, the resulting embedding is

discrete, the embedding function is discontinuous, and the embedding is (a

priori) contained in a connected region of K with finite volume.

The idea is as follows: each anchor point ai ∈ K has an associated ‘source

point’ wi ∈ L in the large space, usually called its weight
12. When a data

12 These weights can be initial-
ized either randomly or by picking
equally spaced values along the axes
of the first k principal components.

point p is embedded, each anchor’s activation is determined, which is a real

number given by a decreasing function of distance between the data point and

the anchor’s weight d (p,wi). The input point is then projected onto the best

matching unit (BMU) aBMU :

aBMU = argmax
ai

A(d(p,wi)) = argmin
ai

d(p,wi),

where A ∶ ℝ → ℝ is a non-negative, monotonically decreasing activation

function. Usually, a Gaussian function is chosen as activation function:

A(x) ∝ exp (−x
2

2�2) ,

with� ∈ ℝ. The BMU is the anchorwith the highest activation, which is also the

14

anchor with the weight closest to the input point, so that the precise activation

function chosen does not matter for determining the BMU (however, it does

influence the update procedure, as we will see).

An important property of SOMs is that they try to preserve topological

characteristics of the input data. This is enforced while learning, the stage in

which the map is modified to properly embed the input data, through a process

inspired by Hebbian learning: “neurons that fire together, wire together”. Each

point in the input data is provided to the map, and the BMU is calculated. Then,

the weights in the map are updated so that the BMU’s weight moves toward the

input point, so that in the future it will activate even more strongly. But: this

update affects all weights in themap, where the amount theweightwj is changed

is proportional to the activation function applied to the inter-anchor distance:

∆wj ∝ A
(
d(aBMU , aj)

)
.

Because A is decreasing (e.g. Gaussian), the points close to the BMU will be

changed more than those far away.

The effect this has is that anchor points that appear ‘close’ in the low-

dimensional map will have their weights kept close as well, and so are modified

over time to also respond strongly to similar input points. This means that

generally points which are close together in the large space, will be projected

onto anchors which are close together in the small space13. Additionally, as the 13 This ‘neighbourhood effect’ can
be alternatively viewed as a form of
regularization which limits the size
of the discrete derivatives across
the map.

learning process progresses, the ‘radius’ � of the activation function will usually

be decreased. This means that the map is initially ‘flattened out’ by giving each

update a large influence over its neighbors, but eventually eachweight is allowed

to specialize almost independently.

The SOM generates an embedding function which is not limited to a linear

parameterization such as in PCA or ICA. Arbitrary shapes in the large space

can be sampled by the anchor points, which creates the possibility for nonlinear

curves to be ‘unrolled’ onto straight lines, reducing the dimensionality while

providing low reconstruction error. This is balanced by the trade-off that

the embedded data set will be discretized, causing a loss of information when

embedding. In addition, the learning process for the SOM is more complicated

and so is less guaranteed to produce good results.

Unfortunately, the largest disadvantage of the SOM algorithm is its computa-

tional complexity. The grid of anchor points grows exponentially in the ‘small’

dimension k. If r is the number of points along each of the k axes, the total

number of points grows as rk . This means that for reducing into a data set with

15

N = 1 to 3 it performs reasonably well, but beyond that it quickly becomes

very expensive in both memory and computation time. Additionally, from a

theoretical point of view it is strange that the number of anchor points, and by

extension the number of parameters, may quickly becomemuch larger than the

number of input data points14. This seems like it would lead to overfitting, but 14 As an example, consider a sam-
ple with N = 8 of 200 points.
This may be projected into k = 4-
dimensional space with a resolu-
tion of r = 10 anchor points per di-
mension. Then, the number of an-
chor points is rk = 10000, which
means there are 50 times as many
parameters as there are data points!

in practice this is not so much a problem as regularization makes the effective

degrees of freedom of the map much lower.

However, it is still necessary to store all anchor points and compute all rk

pairwise distances, which quickly becomes computationally intractable. These

limitations make the traditional SOM unsuitable for this application, as it is

common to have more than a few groups. For this reason, a modified version of

the SOM algorithm has been designed, and this is introduced in the following

section.

3.4 A SOM variant for trajectory grouping.

There are variants of the SOM algorithm which aim to reduce the computa-

tional complexity. One example is curvilinear component analysis (CCA)

(Demartines and Herault, 1997), which is a non-parametric variant. It does not

construct a full mapping from the input space L to the output space K, but only

a suitable embedding of the data points in which the ‘neighborhood’ regulariza-

tion is respected. As such, it only takes the pairwise distances of the in/output

points into consideration. However, in the current application the constraint

that the output must lay on a fixed grid in the output space is useful, as it seems

to encourage separation of independent components onto orthogonal axes15. 15 This may be understood as a l1-
type regularization performed by
encouraging alignment to a rectan-
gular grid. It is also corroborated
by Pajunen (1996) from a statistical
point of view.

Furthermore, if we base our mapping only on the pairwise distances between

data points, we cannot give a clear interpretation to the meaning of the axes in

the reduced data set.

However, there is a way to reduce the complexity by using some additional

structure found in the problem. We will assume that the underlying groups

are independent, and we would like to project each of the groups onto an

orthogonal subspace for the purposes of identification. As such, the projection

mechanisms onto these subspaces do not need to interact: in fact, it is better

if they are as mutually independent as possible. This motivates a new SOM

variant, which aims to restrict the amount of parameters by only defining a set

of k non-interacting 1-dimensional projections, instead of a single projection

onto a full k-dimensional grid. We will refer to this procedure as dimension

grouping (DG) in reference to the problem for which it has been designed.

16

There are two key observations on which this method is based:

1. Because we assume it is possible to partition our set ofN trajectories into

k independent groups, the dimensionality-reducing mapping

f ∶ MN →Mk

should be separable into a concatenation of per-group transformations:

f (x1, … , xN) =
(
f1(xi , …), … , fk(xj , …)

)⊤
,

where fi ∶ Mqi → M is a function projecting the members of group i of

Here x⊤ is the transpose of x.

size qi onto a single instance of the entity space.

2. Because we have trajectories which are continuous in time, any two points

on a single trajectory which are close in time will also be close in space.

Thereforewe can reasonably substitute the spatial distance between points

by the temporal distance when performing regularization.

First these two observations will be further illustrated. Then, the algorithmwill

be described, after which the advantages of this approach will be discussed.

Consider a point y =
(
y1, y2

)⊤
in a two-dimensional output space K = M2,

which is the projection of some higher-dimensional point x ∈ MN . If we would

like these two components y1, y2 of y to represent one group each, we should

be able to determine their value independently of one another, as changing the

position of one group should not change the position of the other. This means that

we should be able to find two independent projections {xi , xj , …} ↦ y1 for the

first group and {xk, xl, …} ↦ y2 for the second group (where all indices i in

xi are distinct), and build up our full projection x ↦ y by combining these

projections. We can project the subset of the entries of x which form the first

group onto y1, and the other entries (which form the second group) onto y2
separately. This division of x into disjoint subsets corresponds to the grouping

partition discussed earlier.

Because of this independence property of our groups, this means instead of

finding a single projection f ∶ MN → Mk , we can find a number of projections

fi ∶ Mqi → M where 1 ≤ i ≤ k and qi is the size of group i, and then

combine the resulting k trajectories. In other words, instead of projecting our

N trajectories onto a grid in k-dimensional space as in the SOM, we project

them onto a set of k trajectories, which may then be reassembled into a k-

dimensional product space. The important part here is that the optimization

17

process does not explicitly construct a k-dimensional space, which for the SOM

caused intractability from k ≥ 3 onwards. To be specific the space complexity

reduces from O(rk) to only O(k ⋅ r), and the time complexity reduces similarly

as well, as it is no longer necessary to compute rk possibilities to find where a

trajectory should be projected or to regularize the output.

This leaves the question of how to regularize these k separate projections

efficiently, as the grid structure is no longer available. For the regular

SOM, close points in the output space should be close in the input space,

and vice versa. Calculating this regularization term leads to an amount of

computation proportional to the rk grid size, as these constitute all possible

outputs. However, because in this case the input trajectories are continuously

parametrized by the time parameter, two points along a trajectory which are

close in time will also be close in the input space. Therefore, as a similar

but weaker condition, we may require that points which are close in time in

the input data are also close in space in the output data. This reduces the

regularization in k spatial directions into a regularization performed in one

temporal direction.

x2

x3

x̄

x1

s1

s2

x2

x3

x̄

x1

s1

s2

(A) (B)

Figure 1: An illustration of how
the DG algorithm divides entities
into groups. The representatives
s1 and s2 are chosen such that the
distances to the entities x1,2,3 are
minimized. Minimizing the total
distance would place both repre-
sentatives on the average value x̄.
However, because only the distance
from each entity to the closest rep-
resentative is taken into account
(the solid arrows), the representa-
tives are free to ignore the distance
to members of other groups (the
dotted arrows). In this example,
configuration B would be preferred
over configuration A.

The algorithm works as follows. The input data is a set of N trajectories

{x1, … , xN} with each x ∈ MT , and so can be described by a N ×T data matrix

X where each row is one trajectory. These trajectories can also be viewed as

discrete functions x[t] of a time parameter 1 ≤ t ≤ T. If there is group structure

in this trajectory data such that the trajectories can be divided over k groups,

that means we should be able to replace each group of trajectories {xi , xj , …} by

a single representative s. Because there are k groups, after replacing each group

we have a set of k representative trajectories {s1, … , sk}, each also T points long,

which wewill store as a kxTmatrix S. Because we aremapping fromX (NxT) to

S (kxT), our dimensionality reduction takes place fromMN toMk as expected.

The method of forming the representatives si is as follows:

1. Start with a set of k trajectories of length T with random values. These are

the representatives {s1, ..., sk}, which are stored in a matrix S.

2. For each input trajectory xj (given by the rows of a matrix X) and time t,

define the grouping error as

"�,S,X,j[t] = min
1≤i≤k

G� ⋆ d
(
si[t], xj[t]

)2.

Here si[t] represents the value of representative si at time t (and similarly

for x), G� is a 1-dimensional Gaussian kernel with standard deviation �,

18

⋆ represents convolution, and d is the distance metric associated with

the space M. The Gaussian kernel plays a similar regularizing role as the

Gaussian activation function A in the SOM algorithm.

The convolution here happens between two discrete functions G�[t] with

domain {−L, ..., L} and D[t] = d
(
si[t], xj[t]

)2
with domain {0, ..., T} and is

defined as:

(G� ⋆ D)[t] =
L∑

l=−L
G[l]D[t − l],

which also has domain {0, ..., T}. In case t − l is negative or greater than T,

the value of D is taken to be zero. The size of the kernel 2L + 1 is based on

� (a rule of thumb is L = 3� which covers nearly all of the Gaussian curve).

x2

x3

x1

s1

s2

x2

x3

x1

s2

s1

x2

x3

x1

s1

s2

t − 1 t + 1t

(A)

x2

x3

x1

s1

s2

x2

x3

x1

s1

s2

x2

x3

x1

s1

s2

t − 1 t + 1t

(B)

Figure 2: An illustration of how the
DG algorithm promotes consistent
groups. The relevant distances be-
tween entities and representatives
are marked by lines, where only
the vertical part corresponds to ac-
tual distance. When looking only
at one time t, the configurations A
and B are equally valid. However,
not only the current distances be-
tween entities and their represen-
tatives (solid lines) are taken into
account, but also these same dis-
tances at nearby times (dotted lines).
Therefore, configuration B would
be preferred over configuration A.

The reasoning behind this error function is as follows:

(a) Each trajectory will be projected onto the closest representative at

each time step. Therefore, the local ‘projection error’ will be a

function of the smallest distance between the entity xj and any of

the representatives s.

(b) This projection error is also ‘smoothed’ over time by the Gaussian

convolution. The local error then becomes a weighted combination

of the current error and the error at nearby times. As a result, if si[t]

is close to xj[t], it is preferred (i.e. gives a lower error) if at nearby

time values t + ∆t, si[t + ∆t] is close to xj[t + ∆t] as well.

Together, these two principles support two desirable grouping

properties of separability and consistency, as pictured in Figures 1

and 2.

3. Define an energy function16 as follows:

16 The term energy function is used
here simply to mean ‘a function of
the state of the system which is to
be minimized’.

E�(S, X) =
1
T

T∑

t=1

N∑

j=1
"�,S,X,j[t]

This simply takes the total energy to be the total grouping error for all

trajectories, averaged over time.

4. This energy function is thenminimized using a gradient descent algorithm

which adjusts the values of the {si}. As the algorithm progresses, the

value of � is decreased, so that first the general structure of the output

is determined, and then the fine details of the representatives are tuned.

This algorithm can be viewed in two ways. The first is in its similarity to

the SOM algorithm. It is similar in the sense that the same operations are

19

performed: a finite set of ‘anchor points’ is defined (by the representatives si),

and iteratively adjusted while locally preserving the distances between input

points and their projections (through regularization). The decreasing value of

� is also taken from the SOM algorithm. Performing the learning process by

function optimization is not part of the original SOM algorithm by Kohonen

(1990), but is taken from the energy function approach to SOMs byHeskes (1999).

It differs from the SOM in that the anchor points are implicitly determined. At

each time step, there are k possible representatives for each trajectory. This

means that the number of N-dimensional weights available is determined by

the number of combinations one can choose one of the k representatives for

each of the entities. Because multiple entities may end up in the same group,

these are chosen with replacement, so there are
(k+N−1

N

)
weights in the N-

dimensional space at each time step, constructed from combinations of the k

different representatives. However, unlike the SOMmore than one weight will

map onto the same output or ‘anchor point’ in k-dimensional space.

The second way to view this algorithm is as a kind of time-smoothed clustering

procedure. In the limit � → 0, the Gaussian kernel becomes a Dirac delta

distribution (discretely, a Kronecker delta function �[t] = �t,0), so that

convolving with it becomes an identity operation: �[t] ⋆ x[t] = x[t] for any

function x. Then, the energy function reduces to:

E�(X, S) =
1
T

T∑

t=1

N∑

j=1
min
1≤i≤k

d
(
si[t], xj[t]

)2.

This is exactly the cost function for the k-means algorithm17, performed for 17 See for example Bottou and Ben-
gio (1994) for a formulation of k-
means as a gradient descent proce-
dure.

every time step and then averaged over time. This means that effectively this

algorithm performs a k-means clustering at each time step, with the added

constraint that these clusters should be consistent from one instant to the next.

Compared to a k-dimensional SOM, this algorithm should be much less time-

consuming. The k representatives can be efficiently trained simultaneously

while avoiding the exponential complexity of the SOM, because they do not

interact directly, but only through the mechanism of competitive learning. As

each trajectory point can only map onto one representative, the representatives

‘feel’ each other’s presence in the sense that, when a trajectory is assigned to

one representative, the other representatives are free to specialize in other ways

without negatively affecting the overall error.

The regularization by convolution ensures that the resulting representatives

indeed take on the shape of trajectories instead of arbitrary time series. Just

20

as in the regular SOM, where Gaussian convolution assures points close in

the small space are also close in the large space, here the convolution ensures

points that are close in time in the input will map to points which are close in

the output space, preserving the continuity of the trajectories. This makes the

representatives consistent in the sense that they prefer to stay with the same set

of trajectories {xi} over time.

The interpretation of the new k-dimensional coordinates is clear: they are

trajectories in their own right, which serve to approximate the larger number

of N trajectories we had initially. This makes them explicitly well-suited to the

trajectory grouping problem, as they provide a projection of the trajectory data

into a space where the basis axes directly correspond to groups.

4 Experimental setup

4.1 Trajectory data from the Kuramoto model.

The trajectory data which will be studied here comes from the Kuramoto

model. This is a dynamical system consisting of N entities which each have a

For more details on the Kuramoto

model and the kind of behavior it

can generate, see for example the

study by Maistrenko et al. (2005).
position on the unit circle and so are represented byN angles {�1, … , �N}. These

entities move at their respective natural velocities {!1, … , !N}. Additionally,

an interaction term of the form � ⋅ sin(�j − �i), which aims to minimize the

difference of velocities between all entities and bring them together. This

makes the parameter � an interaction parameter, which influences the group

structure of the resulting trajectory data.

Figure 3: An example simulation of
the Kuramoto system with N = 4
and � = 7

8
�c . This is an anima-

tion which plays in supported PDF
viewers.

The space in which the entities live is the circle S1. Points in this space can

be uniquely represented by their angle � ∈ [0, 2�) relative to some arbitrary

origin �0 = 0. As such, the space containing a sample of N entities will be the

product space L =
(
S1

)N
, and the associated distance metric will be the l2-

norm combination of angular distances, where the angular distance is simply

the shortest distance along the circle between two points on the circle. This

may be written as:

The second form of d amounts to

saying: either use the distance trav-

elled when moving counterclock-

wise from �i to �j , or use the

distance not travelled when mov-

ing counterclockwise from �i to �j
(which is the clockwise distance),

whichever is shorter.

d(�i , �j) =
|||||Arg e

i(�j−�i)||||| = min(|�j − �i|, 2� − |�j − �i|).

A number of different data sets have been generated for this study, with varying

numbers of entities N and interaction parameter �. In all cases, the natural

velocities !i have been sampled from a standard normal distribution, while the

21

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

� 1

� 2

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

� 1
� 3

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

� 1

� 4
-3 -2 -1 0 1 2 3

-3
-2
-1
0
1
2
3

�2

� 3

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

�2

� 4

-3 -2 -1 0 1 2 3
-3
-2
-1
0
1
2
3

� 3
� 4

Figure 4: A phase plot of a simula-
tion of the Kuramoto system with
N = 4 and � = 7

8
�c . The position

for each pair of entities (�i , �j) ∈
[−�, �)2 with i ≠ j is displayed
to view the movement of entities
relative to each other. In this
case, it intuitively seems that the
‘connection’ between �1 and �2 is
stronger than the other combina-
tions: the distribution of the po-
sition pairs (�1, �2) seems less uni-
form than the other combinations.
To perform dimensionality reduc-
tion, we might therefore choose to
approximate the �1 − �2 plane us-
ing a single dimension (i.e. a line
wrapped around the torus). Al-
ternatively, if we were performing
trajectory grouping, we might take
there to be two groups: {�1, �2} and
{�3, �4}.

initial angles �i were chosen ‘evenly separated’ over the interval [0, 2�):

�i(t = 0) = i − 1
N ⋅ 2�, 1 ≤ i ≤ N

This is to limit the appearance of ‘coincidental groups’, where both the initial

velocity and angle are very close by chance, so that they will appear as a group

even without the influence of the coupling term.

In each case, the system was simulated for a length of 300 time units, and with

time steps of ∆t = 0.01, leading to trajectories with a total length of 3 ⋅ 104 time

steps. Before analysis, the first 104 time steps were excluded in order to study

the behavior on the attractor only, leading to trajectories of length T = 2 ⋅ 104.

Initially, a number of data samples with N = 4 were generated, as these could

be investigated visually by viewing all 6 two-dimensional perspectives of the

4D phase space, as in Figure 4. For higher values of N, the analysis was only

numerical. The values of N chosen for the simulations were all multiples of 4

up to 32:

N ∈ {4, 8, 12, 16, 20, 24, 28, 32}.

The values of �were chosen in relation to the so-called critical value �c , which

for a given distribution of !i ’s determines the point where the system switches

between a globally synchronized and a desynchronized state. The value of �c is

determined from the natural velocity probability density function p(!) as

�c (p) =
2

� ⋅ p(0)

22

in the case of an unimodal distribution. The values used for the analysis below

were

� ∈ {23�c,
7
8�c} .

For each combination of parameters (N, �) a number of C = 30 simulations

were run, with each using a new random sample of initial velocities.

Using the proximity-based method, the amount of groups in each run of the

simulation was determined. These counts are shown in Figure 6 in the next

section. As the values of � chosen lie slightly below the critical value, the

number of groups typically lies around halfway between the minimum number

of groups (1) and the maximum number of groups (N).

4.2 Dimensionality reduction on Kuramoto data.

A number of different dimensionality reduction techniques have been applied

to the simulations of the Kuramoto model: PCA, ICA, SOMs, and the newly

introduced technique described earlier, referred to as dimension grouping (DG).

These methods have been tested in two ways:

(1) How well does the ideal number of ‘components’ agree with the number

of groups as determined by the proximity-based method?

(2) How well do the group structure graphs G obtained from the dimension-

ality reduction and the proximity-based method agree?

For (1), it is necessary that some of these methods provide a measure by which

the ‘importance’ of each component can be determined. PCA uses the (fraction

of) captured variance (CV) to determine the ideal set of components. As

such, the CV can be used to order the components, and also to determine the

(minimum) number of components needed to represent the data set. When the

number of components k is determined, this can be compared to the number of

groups given by the proximity-based method. For ICA, because the resulting

components are (ideally) statistically independent, the CV for a given set of

components is also equal to the sum of the CV per component. As such,

the CV per component may also be calculated and used to determine how

many components are relevant. For the SOM-based methods, the number of

dimensions k must be chosen manually, and so only PCA and ICA may be used

to inform the number of groups present.

For (2), the original simulation data in N dimensions was reduced to a set of

23

k components where k is the number of groups determined by the proximity-

based method. Because the data from the Kuramoto model consists of angular

variables, it is important that the application of statistical methods to them

occurs in a valid way. For the SOM-based methods, all statistics are applied

to the distances between points, so there is no problem. However, for PCA and

ICA the trajectories are compared directly, and quantities such as the mean and

covariance are calculated. These are not trivially defined in the case of angular

data18, so a transformation is made to complex numbers instead. Then, both

18 For data on the unit circle, the
mean cannot easily be identified,
because the origin � = 0 is ar-
bitrary, and because nearby angles
might have a large difference in nu-
merical value (consider e.g. 5° and
355°).
A common method (Fisher, 1993;

Jammalamadaka and Sengupta,
2001) to define the mean of a set of
angles {�k} is through the sum of
their vectorial counterparts. This
corresponds to taking the sum of
complex numbers zk = exp(i�k).
This motivates the transformation
to complex numbers. For another
instance of angular data being
treated in this way see Altis et al.
(2007).

PCA and ICAmay be applied as normal, with some caveats. This is discussed in

more detail in Appendix B.

4.3 Extracting the group structure.

The next step in the experiment is the construction of a group structure graph

GDR using the reduced data set. An overview of this process is given in Figure

5. To construct this graph, the original data matrix X and the reduced data

matrix Y are compared. Every trajectory x in the original (i.e. every row in

X) is compared to every dimension y in the reduced space (i.e. every row in Y)

by a similarity measure r(y, x). Two measures were applied:

(i) Correlation.

(ii) Normalized mutual information (NMI).

Both of these measures produce a real number between 0 and 1. The correlation

measures how close the relationship is to a pure linear relationship y = ax + b

for some a, b ∈ ℝ. The NMI is a more general measure of shared information, Given distributions x and y, the
NMI is defined as

NMI(x, y) = 2MI(x, y)
H(x) + H(y)

,

whereMI(x, y) is the mutual infor-

mation of x and y and H(x) is the
entropy of x.

which is independent of the functional relationship. Rather, it measures how far

away the joint probability distribution P(y, x) is from the product distribution

P(y)P(x). If these two are equal, y and x are independently distributed and so

the NMI will be zero.

The results of these comparisons were stored in a k ×N relationship matrix R,

where each entry

Rji = r(yj , xi),

with yj being the j-th row of Y and xi the i-th row of X. As discussed in

Section 2.2, the matrix R is then normalized via softmax to produce a number

of probability distributions, and from these a partition assigning the original

trajectories (entities) to the reduced dimensions (‘groups’) can be constructed.

This grouping partition is then used to construct the graph GDR .

24

X

(1)
Trajectory

data

Y
Low-

dimensional
data

RY,X
Group-entity
relationships

GDR
Group

structure graph

(4) Group
extraction

Gpr

(5) Comparison:
precision,
recall.

(3)
Dimensionality

reduction

(2) Proximity-based method

Figure 5: An overview of the ex-
perimental setup. Starting from the
simulated trajectory data X (1), a
reference set of groups is generated
via the proximity basedmethod de-
scribed in Section 2 (2).
Additionally, a dimensionality re-
duction algorithm is applied to X
generate a representation Y which
has a dimensionality equal to the
number of groups (3). By compar-
ing these two representations of the
trajectory data, a set of group as-
signments is determined (4).
This set of groups may be com-
pared to the groups from (2) to test
the effectiveness of this method of
trajectory grouping via dimension-
ality reduction (5).

4.4 Comparative analysis.

To evaluate the quality of the groupings produced by application of DR

methods, the graph produced by the proximity-based method Gpr is used as

a benchmark or ‘ground truth’, and the graph GDR produced by dimensionality

reduction is evaluated by seeing how well it agrees with Gpr .

In these graphs, the vertices represent the entities, while the presence of an

edge represents two entities being in the same group. As such, an accurate

‘reproduction’ of Gpr by GDR consists of two parts: it should contain edges when

two entities are in the same group according to Gpr , and it should not put edges

between entities which are not in the same group according to Gpr . If a correctly

placed edge is a true positive (TP), a failure of the former kind (a missing edge)

would be a false negative (FN) and of the latter kind (an extraneous edge) a false

positive (FP).

From these three quantities, the accuracy of a graph GDR may be evaluated using

the metrics of precision and recall:

precision = TP
TP + FP ,

recall = TP
TP + FN .

25

Precision represents the proportion of group assignments made which are

correct, while recall represents the proportion of possible correct group

assignments which are made. As such, there is a tradeoff between precision and

recall which is related to the certainty parameter � seen before. A high value of

� will make many assignments and thus lead to high recall but low precision,

while a low value of �will be conservative in it’s assignments and thus have high

precision but low recall.

These two measures can also be combined into a single measure called the F1-

score:

F1 = 2
precision ⋅ recall
precision + recall

This is the harmonic mean of precision and recall, and places equal emphasis on

the two. Other variants with a parameter also exist, called F� , where � controls

the relative weight of recall to precision. As such, this parameter is very similar

to our parameter �, and therefore it should be sufficient to use theF1-score only, Note that it is only conjectured here

that the two �-parameters (in the

F�-score and in the softmax func-

tion) are roughly interchangeable, it

has not been rigorously tested nor

proven mathematically.

given that we have already chosen fixed values for our softmax-�.

Because the evaluation of these measures is comparative between the different

methods, it is not very importantwhich value of � is chosen, as it simply changes

the tradeoffmade between precision and recall. It is only important that a value

is chosen which leads to useful measurements, i.e. one which does not lead to

one measure being heavily favored over the other, so that there is little nuance

in the results. Suitable values for � also depend on the particular similarity

measure used (correlation orNMI) as these produce a different ‘spread’ of values

in the range [0, 1] and so are naturally predisposed to valuing precision over

recall in a certain way19. For this reason, fixed parameter values of � were

19 For example, if the numbers pro-
duced by the similarity measure
are likely to be clustered around
a certain value, a higher empha-
sis on precision might be necessary
to correctly distinguish ‘strong’ as-
signments from weak ones, com-
pared to a case where the values are
evenly spread between 0 and 1.

chosen for each of the twomeasures by hand (as to show a reasonable variety in

both precision and recall scores), but not varied any further. The exact values

for all parameters are discussed in the next section.

4.5 Implementation.

The simulations and further data processing steps were performed by code

written in Julia, using libraries such as:

• DrWatson20, for project management. 20 https://github.com/

JuliaDynamics/DrWatson.jl
• DynamicalSystems21, for simulating the Kuramoto system.

21 https://github.

com/JuliaDynamics/

DynamicalSystems.jl

• Zygote22, for function optimization.

22 https://github.com/FluxML/

Zygote.jl

https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDynamics/DrWatson.jl
https://github.com/JuliaDynamics/DynamicalSystems.jl
https://github.com/JuliaDynamics/DynamicalSystems.jl
https://github.com/JuliaDynamics/DynamicalSystems.jl
https://github.com/FluxML/Zygote.jl
https://github.com/FluxML/Zygote.jl

26

(Complex) PCA was performed by using the basic statistics functionality

in Julia. Given data matrix X, the PCA algorithm simply calculates an

eigendecomposition of the covariance matrix of X, which gives the PCs

(eigenvectors) and CV per component (eigenvalues). ICA was performed using

the algorithm presented in Zarzoso and Comon (2010), by calling out to the

provided MATLAB code23 using a combination of GNU Octave, Python, and 23 http://www.i3s.unice.fr/

~zarzoso/robustica.htmlthe oct2py24 library. This algorithm was used because it is explicitly designed
24 https://github.com/

blink1073/oct2py

to handle complex inputs as well as real ones. The SOM algorithm and the DG

variant were implemented by hand, by using Julia’s multidimensional arrays

to store the anchor points, and constructing an energy function. This energy

function could then be optimized by using Zygote to set the parameters (the

anchor points and weights) for the mapping. Other implementations of the

SOM exist and were tested, but none could handle output dimensions k > 2

(which is sensible in hindsight). The code for the DG algorithm is available

online as a Julia package25. 25 https://github.com/nardi/

DimensionGrouping.jl
When performing PCA, the data was not mean-centered because of its angular

characteristics (see Appendix B for more details). When performing ICA, the

algorithmparameters usedwere the regressiondeflation type, dimred enabled,

and no prewhitening (for the same reasons as in PCA). In both cases, the angular

data was provided in complex form, as this enables an interpretation of the

linear transform as translation along the circle (see Appendix B).

For the DG algorithm, the number of optimization steps had to be chosen. The

learning process was divided into four parts, with each lasting a maximum

number of ‘rounds’ (gradient descent steps) R. Using absolute and relative

tolerance parameters, each of the four parts could terminate early if the

remaining absolute/relative error was within tolerance. The ‘width’ of the

convolution � would decline with each round r as

�r =
�1

1 + 2r
R

,

where �1 is the starting width. In this experiment the parameter values

used when training were (R, �1) = (60, T∕2), (30, T∕6), (60, T∕20), (50, T∕100),

where T is the number of samples in the entire trajectory.

The correlation function is available in base Julia, while the NMI was

programmed using the mutual information function from the package

InformationMeasures26. The softmax parameters used were �cor = 5 for the 26 https://github.

com/Tchanders/

InformationMeasures.jl
correlation measure and �NMI = 20 for the NMI.

http://www.i3s.unice.fr/~zarzoso/robustica.html
http://www.i3s.unice.fr/~zarzoso/robustica.html
https://github.com/blink1073/oct2py
https://github.com/blink1073/oct2py
https://github.com/nardi/DimensionGrouping.jl
https://github.com/nardi/DimensionGrouping.jl
https://github.com/Tchanders/InformationMeasures.jl
https://github.com/Tchanders/InformationMeasures.jl
https://github.com/Tchanders/InformationMeasures.jl

27

5 Results

In this section, the results of the experiments described in Section 4 are

reported. All of the analyses were performed on a dataset of 480 simulations of

the Kuramoto model. These contained all combinations the selected parameter

values, and each combination was simulated C = 30 times with different sets of

randomly sampled natural velocities. The parameters are described in detail in

Section 4.1.

During the development of the algorithms and methods of analysis, a ‘training

set’ was used to establish working algorithms and to set a number of constant

parameters which could not be determined a priori, such as the �-parameters

for correlation and NMI, and suitable tolerances and amount of steps for

optimization in the DG algorithm. To produce the results shown here, this

training set was swapped out for a ‘test set’, where the same parameters were

usedwith the exception ofC newly randomly generated sets of natural velocities

per configuration of parameters. As such, in both the training and test sets

the same parameters and !-distributions were represented, so that on they

should give the same qualitative grouping behavior, but the actual numerical

trajectories used were entirely different as to show robustness within this range

of parameters. The number of groups present in this data set is shown in Figure

6. Here it can be seen that as N increases, the distribution of the number of

groups k tends to the center of the total range 1 ≤ k ≤ N, and for every N at

least half of the total range is covered by the data.

Many of the figures here represent distributions using box plots. If there is any

uncertainty on how to read these, please refer to Figure 12 in Appendix A for a

general explanation, and to the captions for each figure for details.

5.1 Estimating the number of groups.

When estimating k (the number of groups), the ‘true’ value of k was taken to be

the number of groups predicted using the proximity-basedmethod. To compare

the number of groups obtained by performing PCA or ICA, first the captured

variance per dimension was determined. Then, the dimensions were ordered

by their CV in descending order, and a value for k was chosen by putting a

condition on the sum of the first k values. If the ordered principal/independent

28

4 8 12 16 20 24 28 32
1

1 + N−1
4

1 + 2N−1
4

1 + 3N−1
4

N

N (number of entities)

k
(n
um

be
ro

fg
ro
up

s)

Figure 6: The distribution of the
number of groups k in the data
set used for the analysis, scaled
relative to the number of entities
N. For each N, the distribution
is described by the median (line
inside the box), the first and third
quartile (bottom/top of the box),
and the minimum and maximum
values (outer edges).

components are given by yi for 1 ≤ i ≤ N, then k was chosen such that

Pk
1 − Pk

≥ O (1)

where Pk is the proportion of variance contained in the first k components,

Pk =
∑k

i=1 var(yi)
∑N

i=1 var(yi)
(2)

and O is a constant representing the required ‘odds’ for a sufficient representa-

tion of the full N-dimensional data set. The interpretation of this condition is

that k is chosen such that there is at least O times as much variance contained in

the first k components as is contained in the other N − k components.

A1A1

A2A2

Figure 7: Choosing the number
of dimensions to keep when per-
forming DR via PCA amounts to
choosing a ‘cutoff’ point for which
components with captured vari-
ance (CV) below the cutoff are
dropped. For example, if this graph
shows the CV (y-axis) per compo-
nent (x-axis, in decreasing order),
one might split it into two regions
A1 and A2, where the components
in the left region are kept and the
rest are dropped. Using the rule in
Equation 1, the cutoff is chosen so
that the ratio of these areas A1∕A2

is at least O.

When comparing the estimated number of groups Nest to the actual number of

groups N, we may consider the difference ∆N = Nest − N. The distribution of

these differences is displayed in Figure 8. The accuracy can be calculated as the

number of correct estimates (∆N = 0) divided by the total number of estimates.

For PCA, the accuracy is 369
480

≈ 77% and for ICA the accuracy is 161
480

≈ 34%. If we

allow off-by-one errors (−1 ≤ ∆N ≤ 1), then the accuracy becomes 471
480

≈ 98%

for PCA and 370
480

≈ 77% for ICA.

The values used for the odds-constant O were OPCA = 150 and OICA = 12.

These were chosen so that on average the error ∆N was approximately 0 on

the ‘training set’. These values show that the distinction between the relevant

components and the discarded components is much stronger for PCA than for

29

ICA: the fraction of variance included in the first k components is about an

order of magnitude larger for PCA than for ICA.

-2 -1 0 1 2
0

100

200

300

PCA

C
ou

nt
s

-3 -2 -1 0 1 2 3 4 5
0

50

100

150

ICA Figure 8: The performance of using
PCA or ICA to estimate the number
of groups as the number of relevant
components, determined using the
criterium in Equation 2. The x-
axes represent the difference be-
tween the estimate and the ‘correct’
number of groups (as determined
by the proximity-based method).

5.2 Estimating the group structure.

In estimating the group structure, 4 ways of performing dimensionality

reduction were applied: PCA, ICA, dimension grouping (DG) and additionally

a combination of PCA and ICA, hereafter referred to as PICA. Because the

results of Section 5.1 indicate PCA is better at predicting the number of groups

compared to ICA, it was decided to first reduce the dimensionality using PCA

fromN to k, and then perform a decomposition into independent groups using

ICA (from k to k). This way, bothmethods can be usedwhere they perform best.

In short,

PICA is: X (N ×T)
PCA
⟹ X′ (k ×T)

ICA
⟹ Y (k ×T).

Here X is the input data and Y the reduced representation as normal. Because

both of these methods perform linear transformations, the transformation

resulting from their combination will also be linear.

All four of these methods were applied to the ‘test’ data set, in order to

reconstruct the group structure graph G given by the proximity-based method.

Their performance was measured in terms of precision and recall, and

additionally an F1 score was calculated. Both similarity measures (correlation

and NMI) were tested separately.

Detailed results are available in Appendix A where both precision and recall are

displayed as functions of N for each method/similarity measure combination.

There it can be seen that both correlation andNMI produce comparable results,

except in the case of dimension grouping. For that reason, from here on only

30

PCA ICA PICA DG
0.00

0.25

0.50

0.75

1.00 Figure 9: The distribution of
F1-scores in the grouping task
for each dimensionality reduction
method. Here the whiskers extend
to 1.5 times the IQR beyond the
first/third quartile, and the rest of
the data are plotted as outliers.

the results using the NMI to compare trajectories are considered.

A summary of the results is given in Table 1, and the distribution ofF1-scores for

each method is displayed in Figure 9. The performance of each of the methods

as a function of N is displayed in Figure 11.

PCA ICA PICA SOM0.5

0.6

0.7

0.8

0.9

1.0

Figure 10: The distribution of
F1-scores in the grouping task
for a number of dimensionality
reduction methods, performed
on the data set where the num-
ber of groups is constrained to
k = 2. Here the whiskers extend
to 1.5 times the IQR beyond the
first/third quartile, and the rest of
the data are plotted as outliers.

The SOMwas found to only be computationally feasible if the output dimension

(the dimension of the map) was at most 3. To test whether it would make any

sense to use a SOM for data sets with a small number of groups, an additional

data set was produced by collecting simulations where the number of groups

was found to be k = 2. For this data set, the SOM was compared to PCA, ICA

and their combination. These results are visible in Figure 10 and Table 2.

6 Discussion & further work

6.1 Counting groups.

From the results of the experiments on the Kuramoto data set, we can draw

some conclusions. First of all, there is an agreement between the dimensionality

of the data set as estimated by PCA and the number of groups according to the

proximity-based definition. PCA has some off-by-one errors, but these may

be the result of very slight differences, due to the discretization applied when

deciding whether to place an edge between two vertices in the graph based

on the probability matrix P. Because PCA finds principal components which

are mutually uncorrelated, this indicates that the notion of “groups” based on

31

Method Precision Recall F1
PCA 0.8413 ± 0.0091 0.639 ± 0.015 0.644 ± 0.014
ICA 0.8687 ± 0.0082 0.672 ± 0.015 0.702 ± 0.013
PICA 0.8772 ± 0.0077 0.801 ± 0.011 0.8089 ± 0.0097
DG 0.9573 ± 0.003 0.8103 ± 0.0089 0.8613 ± 0.0065

Table 1: Performance results of
the various dimensionality reduc-
tion methods in the task of group-
ing. For each method the mean val-
ues over the entire data set of the
precision, recall and the combined
F1 score are displayed. The uncer-
tainty measured is the standard er-
ror of the mean.

4 8 12 16 20 24 28 320.4

0.5

0.6

0.7

0.8

0.9

1.0

N (number of entities)

F1
-s
co
re

PCA
ICA
PICA
DG

Figure 11: The mean F1-score in the
grouping task for each dimension-
ality reduction method as a func-
tion of the number of entities N.
The error bars indicate the uncer-
tainty, quantified as the standard er-
ror of the mean.

Method Precision Recall F1
PCA 0.9749 ± 0.0067 1.0 ± 0.0 0.9851 ± 0.0043
ICA 0.9418 ± 0.0086 0.9816 ± 0.0068 0.9562 ± 0.0068
PICA 0.9631 ± 0.007 0.99922 ± 0.00078 0.9786 ± 0.0044
SOM 0.9686 ± 0.0056 0.9513 ± 0.0096 0.9564 ± 0.0071

Table 2: Performance results of
various dimensionality reduction
methods in the task of group-
ing, performed on the data set
where the number of groups is con-
strained to k = 2. For each method
themean values over the entire data
set of the precision, recall and the
combined F1 score are displayed.
The uncertainty measured is the
standard error of the mean.

32

distance agrees with the notion of “groups” of entities as sets of entities with

correlated trajectories. However, this is not an universal observation: it has

only been shown for this particular system. One possibility is to derive an

implication from this observation: if these two notions of groups seem to align

for some data set, it indicates that grouping via dimensionality reduction might

be feasible. Testing this for several other data sets, especially non-synthetic data

sets and data sets with a two- or three dimensional entity space, would be a

good intial experiment to establish the general feasibility for this dimensionality

reduction-based approach to the trajectory grouping problem.

Also, it is clear that the ICA algorithm27 does not perform well when asked to 27 At least, the ICA algorithm as
applied here.‘rank’ components. This is to be expected, as the algorithm is designed to handle

systems with N signals and N unknown sources. If there are more observed

signals than independent components, the algorithm will try to produce

additional independent sources and will end up creating superfluous ‘sparse’

components (Hyvärinen et al., 1999). However, because both PCA and ICA

are linear transformations and easily interpretable, they can be combined well.

The result is a linear transformation which produces statistically independent

components like ICA, but with the addition that any ‘sparse’ components are

first filtered out by PCA, leading to a more robust procedure which allows for

ICA to be applied to overdetermined systems as well. This combination of

PCA and ICA, here called PICA, has been known to be useful for some time

(Hyvärinen et al., 1999), but in practice has led to mixed results. See Artoni

et al. (2018) for an example where the application of dimensionality reduction

via PCA was found to have adverse affects on the ICA decomposition.

6.2 Determining group structure.

In the task of reproducing the group structure graph G none of the methods

seem to be very reliable: in each case there were some runs of the simulation

for which the F1 score was quite low (say, below 0.5). Therefore no firm

conclusions about the performance of these algorithms can be established. The

more detailed figures in Appendix A show that low performance can mostly

be attributed to a low recall. This means that given these parameters (�cor
and �NMI), the generalized grouping algorithm tends to be ‘conservative’ in

grouping entities together. However, it is not simply the case that the precision

has been overemphasized to the detriment of recall, as the precision also fell

below 50% for each of the methods except for dimension grouping. Therefore

the reliability cannot be improved much by simply increasing the ‘certainty’

33

parameter �.

Because in the case of k = 2 groups all algorithms performed verywell (see Table

2), the SOM seems to not be a useful algorithm in this context. It is encouraging

that in the case of various k (Table 1), going from the most general (PCA) to the

most specialized algorithm (DG) seems to increase the performance in terms

of all measures applied. This shows that at least each specialization or addition

applied is worthwhile.

The algorithms each have certain properties which make them useful in the

context of this task, and possibly in other contexts as well. The combination

of PCA and ICA is a nice alternative to regular PCA when its dimensionality

reduction properties are needed, but when the uncorrelatedness of components

is not meaningful or not a strong enough condition to make the resulting

components independent in a meaningful way. The statistical independence

aimed for by ICA may be useful in a larger variety of situations when trying

to distinguish between important components of a data set. The dimension

grouping algorithm also has some advantages of its own. Because of its roots

in the SOM, the algorithm is quite flexible: it can function given an arbitrary

distance metric between entities and it is not limited to only linear relations

between entities like PCA or ICA.

6.3 Related problems and further research.

Larger number of entities. In the present study, only simulations with

a number of entitiesN up to 32 were tested. From the results, it can be seen that

in every case the performance on the grouping task decreases as N increases.

Again this seems to be because of declining recall, as the precision does not

show clearly show such a trend. This means that it might be improved if the

certainty parameter � is increased as a function of N. In any case, it would

be worthwhile to test these algorithms for data sets with larger N as well to

quantify this relationship properly.

Central trajectories. Related to the trajectory grouping problem is

the task of finding central trajectories: trajectories which are representative of

a group as a whole (Kreveld et al., 2017). When performing dimensionality

reduction, this problem is implicitly also treated, as the output space of the

DR algorithm can be considered a space in which these central trajectories

live. However, the various methods fill this space in a different way. The axes

determined by PCA follow a sequence of optimal ‘fits’ to the data, which makes

34

the axes not interpretable as central trajectories28. From the first experiment, 28 For example, the first component
provides an overall ‘average’ of all
entities, and therefore incorporates
all groups, which means it cannot
be considered a central trajectory
of any one group. This applies to
the second component as well, and
so on.

we expect that central trajectories are contained in the space of the first k PCs,

but we cannot locate them easily.

The addition of ICA helps with this: because the resulting components are

maximally independent, it would be disadvantageous if one group would be

shared by two components, as there would then be some dependence. The

axes of the PCA+ICA reduction might therefore be more suitable as central

trajectories. However, each central trajectory will be a linear combination of

entities, which is discouraged by Kreveld et al. as this might lead to ‘impossible’

trajectories.

The dimension grouping algorithm has a more direct approach to this problem,

as the output trajectories are explicitly modelled as group representatives.

Moreover, it provides the flexibility to control how a good representation is

determined. Currently a good representative is one that minimizes the sum of

squared distances to the group members, which means it produces the centroid

The centroid of the set X = {xi},
1 ≤ i ≤ N, xi ∈ M is the point

y ∈ M which minimizes

N∑

i=1
d(xi , y)2.

of the group through iteration. This could for example be changed to the spatial

median by removing the square in the energy function.

The spatial median ofX is the point

y ∈ M which minimizes

N∑

i=1
d(xi , y).

A better choice might be the medoid, where the central point is constrained to
The medoid of X is the point x ∈ X
which minimizes

N∑

i=1
d(xi , x).

be equal to one of the group members. To incorporate this constraint is more

difficult, as it does not suggest a clear continuous objective function, but there

may be ways to adjust the energy function such that representatives very close

to the original trajectories are strongly preferred. One example of this might

be to parametrize the representatives in terms of the original trajectories, and

apply appropriate regularization to the parameters. For example, one might

choose a (constant) linear parametrization

si[t] =
N∑

j=1
Bij xj[t],

where we have introduced the parameters Bij with 1 ≤ i ≤ k, 1 ≤ j ≤ N.

These parameters may then be adjusted in order to minimize the regular DG

objective combined with an additional regularization term which promotes

configurations where only one B-value is nonzero for any given i, i.e. where

each representative is (approximately) given by a single trajectory. This allows

one to obtain a set of representatives which are (approximately) the medoids of

their respective groups.

To allow which trajectory is chosen as group representative to vary over time

(which may be useful even if the group structure does not change, but another

35

group member travels closer to the center), one can make the Bij coefficients

time-dependent as well. However this introduces many more degrees of

freedom29 and so extra regularization needs to be applied in order to retain 29 For example, if the coefficients
are time-dependent and the tra-
jectories live in a one-dimensional
space, one can store an entire rep-
resentative trajectory in the coef-
ficients of one variable. As such,
any trajectory si can be obtained
by simply multiplying any other
(nonzero) trajectory xj with pre-
cisely chosen coefficients

Bij[t] =
si[t]
xj[t]

.

Applying a ‘sparsity’ constraint
such as l1-regularization will
then simply always choose the
trajectory xj with the biggest value
t as the representative at t, so that
the coefficient needed to obtain si
will be as small as possible.

a meaningful interpretation of the coefficients and the trajectories which are

chosen as representatives.

Time-varying group structure. One assumption which is made here is

that the group structure is constant over the time interval on which analysis is

performed. This is generally not the case or at least not known in advance, and

in fact the moments when groups change are often especially interesting. The

most straightforward way to keep track of a changing group structure when

using dimensionality reduction would be to divide the trajectory into ‘frames’

of some number of time steps �, and extract the group structure from each

frame separately. When applying dimensionality reduction, more than one

instance in time needs to be considered to find a proper embedding, so there

will necessarily be a limited temporal precision with which the group structure

may be determined. In Buchin et al. (2013), a temporal ‘stability’ parameter � is

used to ensure that groups do not respond to very quick changes, which shows

that this finite resolution is actually desirable. However, if the resolution is too

high (i.e. � is small) the quality of the embedding might drop, or it might differ

wildly over consecutive frames which would make it hard to track groups over

time. For this problem, the dimension grouping algorithm could possibly be

applied in a ‘layered’ fashion, to ensure consistency of groups between frames.

Bibliography

Adali, T., Schreier, P. J., and Scharf, L. L. (2011). Complex-Valued Signal

Processing: The Proper Way to Deal With Impropriety. IEEE Transactions

on Signal Processing, 59(11):5101–5125.

Altis, A., Nguyen, P. H., Hegger, R., and Stock, G. (2007). Dihedral angle

principal component analysis ofmolecular dynamics simulations. The Journal

of Chemical Physics, 126(24):244111.

Amari, S., Karakida, R., and Oizumi, M. (2018). Information geometry

connecting Wasserstein distance and Kullback–Leibler divergence via the

entropy-relaxed transportation problem. Information Geometry, 1(1):13–37.

Artoni, F., Delorme, A., and Makeig, S. (2018). Applying dimension reduction

to EEG data by principal component analysis reduces the quality of its

36

subsequent independent component decomposition. NeuroImage, 175:176–

187.

Bottou, L. and Bengio, Y. (1994). Convergence Properties of the K-Means

Algorithms. In Tesauro, G., Touretzky, D. S., and Leen, T. K., editors, Advances

in Neural Information Processing Systems 7, pages 585–592. MIT Press.

Bridle, J. S. (1990). Probabilistic Interpretation of Feedforward Classification

Network Outputs, with Relationships to Statistical Pattern Recognition. In

Neurocomputing, pages 227–236. Springer Berlin Heidelberg.

Buchin, K., Buchin, M., van Kreveld, M., Speckmann, B., and Staals, F. (2013).

Trajectory grouping structure. In Dehne, F., Solis-Oba, R., and Sack, J.,

editors, Algorithms and Data Structures, WADS 2013, volume 8037 of Lecture

Notes in Computer Science, pages 219–230. Springer Berlin Heidelberg.

Cottrell, M., Olteanu, M., Rossi, F., and Villa-Vialaneix, N. (2016). Theoretical

and Applied Aspects of the Self-Organizing Maps. In Advances in Self-

Organizing Maps and Learning Vector Quantization, pages 3–26. Springer

International Publishing.

Couzin, I. D. (2009). Collective cognition in animal groups. Trends in Cognitive

Sciences, 13(1):36–43.

Demartines, P. and Herault, J. (1997). Curvilinear component analysis: a

self-organizing neural network for nonlinear mapping of data sets. IEEE

Transactions on Neural Networks, 8(1):148–154.

Fisher, N. I. (1993). Descriptive methods. In Statistical Analysis of Circular Data,

pages 15–38. Cambridge University Press.

Heskes, T. (1999). Energy functions for self-organizing maps. In Kohonen Maps,

pages 303–315. Elsevier.

Hyvärinen, A., Särelä, J., and Vigário, R. (1999). Spikes and bumps: artefacts

generated by independent component analysis with insufficient sample size.

In Proc. Int. Workshop on Independent Component Analysis and Blind Separation

of Signals (ICA’99), Aussois, France.

Hyvärinen, A. and Oja, E. (2000). Independent component analysis: Algorithms

and applications. Neural Networks, 13(4-5):411–430.

Jammalamadaka, S. R. and Sengupta, A. (2001). Topics in Circular Statistics. World

Scientific.

37

Kohonen, T. (1990). The self-organizingmap. Proceedings of the IEEE, 78(9):1464–

1480.

Kreveld, M. V., Löffler, M., and Staals, F. (2017). Central trajectories. Journal of

Computational Geometry, Vol 8:No 1 (2017)–.

Langlois, D., Chartier, S., and Gosselin, D. (2010). An introduction to

independent component analysis: Infomax and fastica algorithms. Tutorials

in Quantitative Methods for Psychology, 6(1):31–38.

Lee, D. and Liang, S. H. L. (2011). Crowd-sourced carpool recommendation

based on simple and efficient trajectory grouping. In Proceedings of the 4th

ACM SIGSPATIAL International Workshop on Computational Transportation

Science - CTS '11. ACM Press.

Maistrenko, Y. L., Popovych, O. V., and Tass, P. A. (2005). Desynchronization

and Chaos in the Kuramoto Model. In Lecture Notes in Physics, pages 285–

306. Springer-Verlag.

Nergiz, M. E., Atzori, M., and Saygin, Y. (2008). Towards trajectory

anonymization. In Proceedings of the SIGSPATIAL ACM GIS 2008

International Workshop on Security and Privacy in GIS and LBS - SPRINGL

'08. ACM Press.

Pajunen, P. (1996). Nonlinear Independent Component Analysis by self-

organizing maps. In Artificial Neural Networks — ICANN 96, Lecture Notes

in Computer Science, pages 815–820, Berlin, Heidelberg. Springer.

Pellegrini, S., Ess, A., and Gool, L. V. (2010). Improving Data Association by Joint

Modeling of Pedestrian Trajectories and Groupings. In Computer Vision –

ECCV 2010, pages 452–465. Springer Berlin Heidelberg.

Phang, T., Neville, M., Rudolph,M., andHunter, L. (2002). Trajectory clustering:

a non-parametric method for grouping gene expression time courses, with

applications to mammary development. In Pac Symp Biocomput. 2003, pages

351–362. World Scientific.

Shlens, J. (2014). A Tutorial on Principal Component Analysis.

http://arxiv.org/abs/1404.1100v1.

Van Der Maaten, L., Postma, E., and Van den Herik, J. (2009). Dimensionality

reduction: A comparative review. J Mach Learn Res, 10(66-71):13.

Zarzoso, V. and Comon, P. (2010). Robust Independent Component Analysis

by Iterative Maximization of the Kurtosis Contrast With Algebraic Optimal

Step Size. IEEE Transactions on Neural Networks, 21(2):248–261.

List of concepts

F1-score, 25

Activation, 13

Anchor points, 13

Captured variance (CV), 11

Central trajectories, 33

Demixing problem, 12

Dimension grouping (DG), 15

Dimensionality reduction (DR), 3, 9

Embedding, 9

Entities, 4

Entity spaceM, 9

Error metric, 10

Generalization, 10

Group, 5

Group structure graph G, 6

Grouping error, 17

Grouping partition, 8

Independent component analysis (ICA), 12

Input space, 9

Large space L, 9

Output space, 9

Parameterization, 10

Parametric methods, 10

PICA, 29

Precision and recall, 24

Principal component analysis (PCA), 11

Principal components (PCs), 11

Product space, 10

Proximity-based definition of a group, 5

Reconstruction error, 10

Regularize, 11

Relationship matrix R, 7

Self-organizing maps (SOMs), 13

Separable, 16

Small space K, 9

Soft group assignments, 8

Softmax function, 8

Strict group assignment, 8

Trajectories, 4

Trajectory grouping problem (TGP), 3, 4

Weight, 13

Appendices

A Additional figures of results

In this appendix additional results on the performance of each dimensionality

reduction (DR) method in the task of grouping are displayed. For each method,

the precision and recall compared to the proximity-based method have been

measured. These are displayed as a function of increasing number of entitiesN

in Figures 13-16. Results are reported using both similarity metrics, correlation

and normalized mutual information (NMI). Because these figures employ box

plots, an overview of how to read these plots is given in Figure 12.

39

Q1 Q3

IQR

Median

Q3 + 1.5 × IQRQ1 − 1.5 × IQR

−0.6745σ 0.6745σ 2.698σ−2.698σ

50%24.65% 24.65%

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

−4σ −3σ −2σ −1σ 0σ 1σ 3σ2σ 4σ

Figure 12: An overview of how to
read a distribution visualized by a
box plot. The box extends from the
first quartile (Q1, 25%/75% split left
to right) to the third quartile (Q3,
75%/25% split), with the median
marked by a thick line. Then,
the ‘whiskers’ of the plot are lines
which extend beyond the box to
mark either all of the other data
(from minimum to maximum), or
up to a point determined by the
interquartile range IQR = Q3 - Q1.
In the second case, any data outside
this range may be considered out-
liers and are plotted using regular
markers. For a normal distribu-
tion, the corresponding probability
mass percentages are displayed
below and in terms of standard
deviations � from the mean. This
image has been adapted from
Wikipedia under CC BY-SA 2.5 and
was created by user Jhguch (https:
//commons.wikimedia.org/w/

index.php?curid=14524285).

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By NMI

Pr
ec
is
io
n

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By correlation

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)

Re
ca
ll

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)
Figure 13: The performance of
grouping using PCA in terms of
precision and recall as a function of
increasing N.

https://commons.wikimedia.org/w/index.php?curid=14524285
https://commons.wikimedia.org/w/index.php?curid=14524285
https://commons.wikimedia.org/w/index.php?curid=14524285

40

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By NMI

Pr
ec
is
io
n

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By correlation

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)

Re
ca
ll

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)
Figure 14: The performance of
grouping using ICA in terms of
precision and recall as a function of
increasing N.

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By NMI

Pr
ec
is
io
n

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By correlation

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)

Re
ca
ll

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)
Figure 15: The performance of
grouping using PICA in terms of
precision and recall as a function of
increasing N.

41

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By NMI

Pr
ec
is
io
n

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0
By correlation

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)

Re
ca
ll

4 8 12 16 20 24 28 320.0

0.2

0.4

0.6

0.8

1.0

N (number of entities)
Figure 16: The performance of
grouping using DG in terms of
precision and recall as a function of
increasing N.

42

B Angular and complex PCA

In order to apply PCA to a data set of angles, we have performed a A reference for a similar application

of complex PCA to angular data is

Altis et al. (2007). Also interesting

for those who would like to per-

form PCA with complex inputs is

the article by Adali et al. (2011). Here

the similarities and differences be-

tween linear transformations in ℂ
and ℝ2 are discussed. It turns out

that linear transformations inℂ are

more restrictive than those in ℝ2.

Because we are trying to establish

what complex linear transforma-

tions mean in S1, which is even

more restrictive thanℝ, the projec-
tion to ℝ2 is not so useful here.

transformation to complex numbers. This transformation is motivated by the

fact that statistical notions such as (co)variance are not well-defined for angles.

The main reason for this is the possibility of “wrap-around”: data points can be

very far apart in numerical value, while being very close in geometrical distance.

Take for example two angles of 5o and 355o. The numerical difference is 350o,

while their actual distance is only 10o. This makes it difficult to define a good

metric on the circle without (implicitly) transforming to a differentmetric space

such as ℝ2 or ℂ

The ambiguity arises because of the rotational (or translational, in terms of

angles) symmetry of the circle, so that any choice of an origin (the point which is

0o or zero radians) is arbitrary. As such, there is no clear “correct” way to define

a mean angle of points on the circle. When given an uniformly distributed set

of angles, no choice is intuitively more right than another. Take the mean angle

between 90o and 270o. Should it be 0o or 180o, and why?

A common method to define the mean of a set of angles {�k} is through the

sumof their vectorial counterparts (Fisher, 1993; Jammalamadaka and Sengupta,

2001). This corresponds to taking the sum of complex numbers zk = exp(i�k).

Then, the angle of their mean z gives a reasonable mean angle in most cases.

For a uniform distribution of angles, the magnitude of z will go to 0, and so the

mean angle can be said to be undefined.

So to perform PCA with our angular data, the angles {�k} are first converted

to complex numbers with unit magnitude {zk} . Then, the different parts of the

PCA process each differ a bit compared to regular PCA, and will be considered

here one-by-one.

Mean centering. PCA expects the data to bemean-centered before analysis,

or alternatively to first center the data before transforming to the PC-space.

This is because in calculating (co)variance, the distance between samples and

the mean is considered instead of the sample values themselves. For this, the

complexmean can be used, which corresponds to the angularmean as discussed

before. However, most of our data series are approximately mean centered

already, as they fully rotate around the unit circle an arbitrarily large number

of times. This means they are approximately uniformly spread along the unit

circle, and as such the mean tends to z = 0.

43

Therefore, it is assumed here that the complex version of our angular time series

will have a mean z ≈ 0, and the data is not mean-centered when performing

PCA. This has the added benefit of simplifying the interpretation: the additive

term b in the linear transformation y = ax + b is assumed to be zero, and so

the data will not be translated relative to the origin, which means the principal

componentsmust also lie on a circle of fixed radius around the origin. Therefore

we may in the end simply calculate the angles of the principal components with

respect to the origin to retrieve a meaningful angular representation.

Covariance matrix. In the case of complex numbers, the covariancematrix

is a bit harder to interpret. First, note that the variance of a set of unit complex

numbers with mean z = 0 is always equal to 1. This can be show as follows.

The covariance is defined as:

cov (x, y) = E[
(
x − x

) (
y − y

)∗]

where E [...] is the expected value and x, y are the means of x and y. If

zk = exp (i�k) and zk = 0, then

cov
(
zi , zj

)
= E

[
ziz∗j

]
= E

[
exp (i�i) ⋅ exp

(
−i�j

)]
= E

[
exp(i[�i − �j])

]

and

var (zk) = cov (zk, zk) = E [exp (i[�k − �k])] = E [1] = 1.

Furthermore, in linear regression the slope � of the best-fit linear relationship

zi = �zj + � can be expressed as:

� =
cov(zi , zj)
var(zj)

.

Because var
(
zj

)
≈ 1 in our case, that means cov(zi , zj) is equal to the slope

(linear coefficient) � of the (best-fit) linear relationship between zi and zj . In

the case of complex numbers, this will also be a complex number � = rei�.

This multiplication can then be interpreted as a transformation consisting of a

scaling factor r and a rotation by an angle �.

Correlation. Normally, the covariance can be used to calculate Pearson’s

correlation coefficient which shows whether a linear relationship is present:

corr (x, y) =
cov(x, y)

√
var (x) ⋅ var(y)

∈ [−1, 1].

Here x, y are real-valued. If this same formula is applied to the unit-complex

44

numbers z, this becomes

corr
(
zi , zj

)
=
cov(zi , zj)

√
1 ⋅ 1

= �,

but this value cannot straightforwardly be interpreted as an indicator of a linear

relationship, as it is a complex number which cannot be ordered to contrast a

strong relationship from a weak one. But because our data is constrained to lie

on the unit circle, a clearer interpretation can be given.

Suppose we have an approximate linear relationship zi = �zj with a value of

� = rei� with r < 1 or r > 1. This means that transforming zj to zi or vice

versa, which would require multiplying by �, would amount to scaling the data

such that it moves it off the unit circle. Because zi and zj both lay on the unit

circle, a scaling should not necessary, and since this is the best-fit linear relation

between the two the only possible conclusion is that they are simply not very

well modelled by a linear relationship. As such, we can take the magnitude

‖�‖ = r as a measure of whether two angular variables are linearly relatable:

if it is close to 1, the two are likely well correlated and vice versa. Note that this

aligns with the notion of R2 = corr
(
zi , zj

)2
as a measure of goodness-of-fit in

linear regression.

Interpretation of linear transformations. Through the previous

steps we have established a number of extra assumptions or constraints on

the complex linear transformation relating the unit-complex versions of our

angular variables. In the end, we aim to find a unit-complex linear transformation

of the form

zi = �zj = rei�zj

which maps some zi and zj onto each other. Moreover, if the two are linearly

relatable we expect that ‖�‖ ≈ 1. As such, the transformation is essentially

parametrized by only one number, the rotation � ∈ ℝ.

This means that a unit-complex linear transformation essentially amounts to

a rotation in complex space, or a translation in angular space, and as such is

more restrictive than a real-valued linear transformation. This makes sense in

the context of the circle: translations by some angle aremeaningful, but because

there is no good choice for an origin angle, there is nothing relative to which

scaling may be performed, and so there is no meaningful way to perform a

‘scaling’ transformation on angular data.

	Introduction
	The trajectory grouping problem.
	The proximity-based definition of a group.
	The relationship between grouping and dimensionality reduction.
	Generalized grouping via dimensionality reduction.

	Dimensionality reduction methods
	PCA
	ICA
	SOMs
	A SOM variant for trajectory grouping.

	Experimental setup
	Trajectory data from the Kuramoto model.
	Dimensionality reduction on Kuramoto data.
	Extracting the group structure.
	Comparative analysis.
	Implementation.

	Results
	Estimating the number of groups.
	Estimating the group structure.

	Discussion & further work
	Counting groups.
	Determining group structure.
	Related problems and further research.

	List of concepts
	Appendices
	Additional figures of results
	Angular and complex PCA

	anm0:
	0.200:
	0.199:
	0.198:
	0.197:
	0.196:
	0.195:
	0.194:
	0.193:
	0.192:
	0.191:
	0.190:
	0.189:
	0.188:
	0.187:
	0.186:
	0.185:
	0.184:
	0.183:
	0.182:
	0.181:
	0.180:
	0.179:
	0.178:
	0.177:
	0.176:
	0.175:
	0.174:
	0.173:
	0.172:
	0.171:
	0.170:
	0.169:
	0.168:
	0.167:
	0.166:
	0.165:
	0.164:
	0.163:
	0.162:
	0.161:
	0.160:
	0.159:
	0.158:
	0.157:
	0.156:
	0.155:
	0.154:
	0.153:
	0.152:
	0.151:
	0.150:
	0.149:
	0.148:
	0.147:
	0.146:
	0.145:
	0.144:
	0.143:
	0.142:
	0.141:
	0.140:
	0.139:
	0.138:
	0.137:
	0.136:
	0.135:
	0.134:
	0.133:
	0.132:
	0.131:
	0.130:
	0.129:
	0.128:
	0.127:
	0.126:
	0.125:
	0.124:
	0.123:
	0.122:
	0.121:
	0.120:
	0.119:
	0.118:
	0.117:
	0.116:
	0.115:
	0.114:
	0.113:
	0.112:
	0.111:
	0.110:
	0.109:
	0.108:
	0.107:
	0.106:
	0.105:
	0.104:
	0.103:
	0.102:
	0.101:
	0.100:
	0.99:
	0.98:
	0.97:
	0.96:
	0.95:
	0.94:
	0.93:
	0.92:
	0.91:
	0.90:
	0.89:
	0.88:
	0.87:
	0.86:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

